Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
FairXbar: Improving the Fairness of Deep Neural Networks with Non-Ideal in-Memory Computing HardwareFree, publicly-accessible full text available March 31, 2026
-
To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman–Kittel–Kasuya–Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.more » « less
-
Abstract Self‐propulsion of highly wetting liquids is important in heat exchanger, air conditioning, and refrigeration systems. However, it is challenging to achieve such a spontaneous motion as these liquids tend to wet all the surfaces due to their ultralow surface tensions. Despite that extensive asymmetric surface structures and gradient chemical coatings are developed for directional droplet transport, they will be flooded and covered by these liquids. Here, this challenge is addressed by creating a gradient quasi‐liquid surface to achieve the self‐propulsion of droplets with surface tensions down to 10.0 mN m−1. Such a surface engineered by tethering flexible polymers with gradient grafting density shows ultralow contact angle hysteresis (<1o) to highly wetting liquids. Thus, the surface can simultaneously provide sufficient driving forces through the gradient wettability and negligible retention forces through the slippery boundary lubrication for spontaneous droplet movement. Moreover, continual self‐propulsion of tiny droplets is achieved by spraying highly wetting liquids in simulated condensation conditions and demonstrates that adding temperature gradient can further accelerate the self‐propulsion. The study provides a new paradigm to promote passive removal of highly wetting droplets, leading to potential impacts in enhancing condensation heat transfer regardless of surface orientations.more » « less
-
Abstract Topological spin/polarization structures in ferroic materials continue to draw great attention as a result of their fascinating physical behaviors and promising applications in the field of high‐density nonvolatile memories as well as future energy‐efficient nanoelectronic and spintronic devices. Such developments have been made, in part, based on recent advances in theoretical calculations, the synthesis of high‐quality thin films, and the characterization of their emergent phenomena and exotic phases. Herein, progress over the last decade in the study of topological structures in ferroic thin films and heterostructures is explored, including the observation of topological structures and control of their structures and emergent physical phenomena through epitaxial strain, layer thickness, electric, magnetic fields, etc. First, the evolution of topological spin structures (e.g., magnetic skyrmions) and associated functionalities (e.g., topological Hall effect) in magnetic thin films and heterostructures is discussed. Then, the exotic polar topologies (e.g., domain walls, closure domains, polar vortices, bubble domains, and polar skyrmions) and their emergent physical properties in ferroelectric oxide films and heterostructures are explored. Finally, a brief overview and prospectus of how the field may evolve in the coming years is provided.more » « less
An official website of the United States government
